

HADEA SERVICE CONTRACT 20197409

Provision of EU networking and support for public health reference laboratory functions for antimicrobial resistance in *Salmonella* species and *Campylobacter* species in human samples

EU protocol for harmonised monitoring of antimicrobial resistance in human Salmonella and Campylobacter isolates.

EUCAST protocols, guidelines, clinical/epidemiological breakpoints, interpretation and website.

EQA-AST 6

Jeppe Boel Statens Serum Institut jebl@ssi.dk

EUROPEAN CENTRE FOR DISEASE PREVENTION AND SERVENTION AND SERVENTI AND SERVENTANTAN AND SERVENTAND SERVENTIAN AND SERVENTIAN A

- S M T
- Has a mandate to gather and analyse data and information on emerging public health threats
- The collection antimicrobial resistance (AMR) data is included as part of the European Surveillance System (TESSy) through several networks:
- EARS-Net (S. pneumoniae, S aureus, E. faecalis, E. faecium, E. coli, Klebsiella pneumoniae, P. aeruginosa, and Acinetobacter spp.).
- HAI-Net collects data on AMR in selected pathogens associated with healthcare-associated infections.
- ESAC-Net collects data on the consumption of antimicrobial agents in humans.
- FWD-Net collects data on AMR in Salmonella spp., Campylobacter spp. and Shiga toxin/verocytotoxin-producing Escherichia coli (STEC/VTEC)

AMR MONITORING - ZOONOSES IN ANIMALS AND FO

- Directive 2003/99/EC requires Member States to monitor and report comparable data on AMR in zoonoses and zoonotic agents in foodproducing animals and food
- Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria

Read the report

el osa nere

DENTIFIC REPORT

The European Union Summary Report on Artimicrobial Resistance in zoonotic and indicator bacteria from human animals and food in 2019–2020

Bropen Real Mely Adhe by and open Gette to Disease Presention and Cart

betect

We is a substant exciton by the transmission of testing basis but to be transmission, whether and an exciton of testing the transmission of the testing testing the testing t

13 3 Will y Chi Vallag (bit # 5. figst an belaff a fill - for speen Poor belay Action

Agenordia: addate state obtainer, consults barbert, takate che state, 1995, 1995

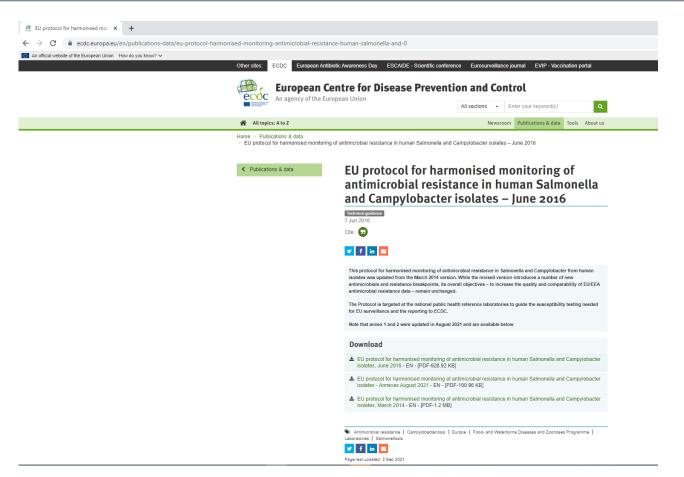
inganden kompen Sarateka partier namlen 1930/1930 EM innapartieren nammeljele magern (1932) 1950/autorepen (1932)

and the second design of the s

Publication

The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020

Technical report - 29 Mar 2022


Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report.

- The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019– 2020 - EN - [PDF-67.39 MB]
 - Antimicrobial consumption | Antimicrobial resistance | Antimicrobial stewardship |

Ð

EU HARMONIZED PROTOCOL FOR AMR TESTING OF STATENS SALMONELLA AND CAMPYLOBACTER

https://www.ecdc.europa.eu/en/publications-data/eu-protocol-harmonisedmonitoring-antimicrobial-resistance-human-salmonella-and-0

HARMONIZED EU PROTOCOL FOR DOWNLOAD

Note that annex 1 and 2 were updated in August 2021 and are available below

Download

- EU protocol for harmonised monitoring of antimicrobial resistance in human Salmonella and Campylobacter isolates, June 2016 - EN - [PDF-928.92 KB]
- EU protocol for harmonised monitoring of antimicrobial resistance in human Salmonella and Campylobacter isolates - Annexes August 2021 - EN - [PDF-100.96 KB]
- EU protocol for harmonised monitoring of antimicrobial resistance in human Salmonella and Campylobacter isolates, March 2014 - EN - [PDF-1.2 MB]

EU PROTOCOL FOR HARMONIZED AMR TESTING

TECHNICAL DOCUMENT

EU protocol for harmonised monitoring of antimicrobial resistance in human *Salmonella* and *Campylobacter* isolates

June 2016

"The content of this report was developed at three expert workshops arranged by ECDC. The report was sent for consultation to the Foodand Waterborne Diseases and Zoonoses network."

EU SURVEILLANCE OBJECTIVES (1)

- a) To monitor, in human clinical isolates, trends in the occurrence of resistance to antimicrobial agents relevant for treatment of human Salmonella and Campylobacter infections, including comparison with food/animal isolates
- b) To monitor, in human clinical isolates, trends in the occurrence of resistance to other antimicrobial agents of public and animal health importance, including comparison with food/animal isolates
- c) To monitor, in human clinical isolates, the prevalence of ESBL, plasmid-encoded Ambler class C βlactamases (pAmpC) and carbapenemase phenotypes
- d) To use antimicrobial resistance patterns to characterise human clinical isolates, i.e. as an epidemiological marker, to support identification of outbreaks and related cases

EU SURVEILLANCE OBJECTIVES (2)

- d) To use antimicrobial resistance patterns to characterise human clinical isolates, i.e. as an epidemiological marker, to support identification of outbreaks and related cases
- e) To identify and monitor, in human clinical isolates, genetic determinants of resistance that are important for public health e.g. to aid recognition of epidemic cross-border spread of multi-drug resistant Salmonella strains
- f) To monitor, in human clinical isolates, trends in the occurrence of resistance to antimicrobial agents that may be needed for future therapeutic use

Data should be reported quantitatively (mm or mg/l)

REQUIREMENTS FOR SURVEILLANCE

- No specific requirements for the extent of surveillance/monitoring are defined in the EU harmonized protocol
- One of the tasks for the FVD AMR-RefLabCap project is to propose minimum requirements for national AMR surveillance

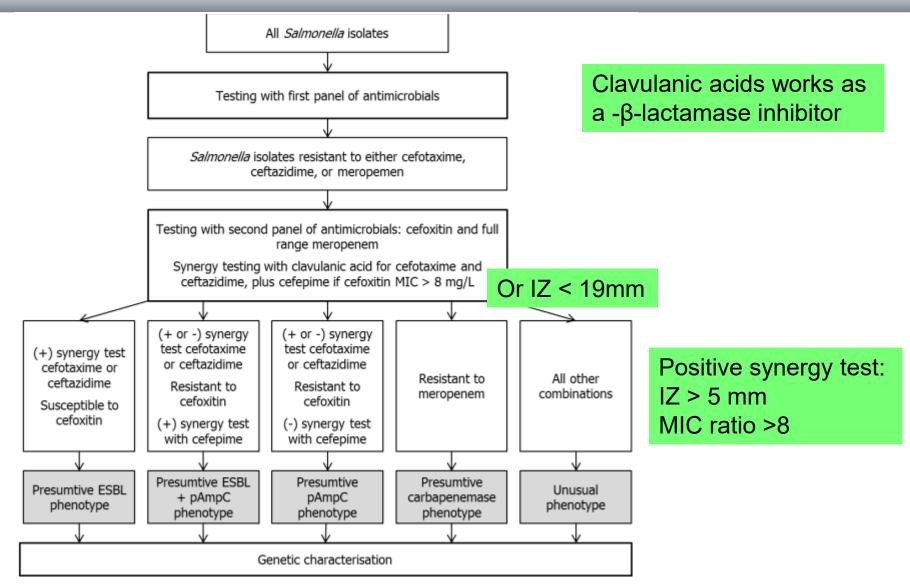
Class	Name (abbreviation*)	Surveillance objectives	Comments
First priority			
Aminoglycosides	Gentamicin (GEN)	b, d	
Aminopenicillins	Ampicillin (AMP)	a, b, d	
Amphenicols	Chloramphenicol (CHL)	a, d	
Carbapenems	Meropenem (MEM)	a, b, c, d, e	EUCAST recommend meropenem as it offers the best compromise between sensitivity and specificity in terms of detecting carbapenemase-producers
Cephalosporins	Cefotaxime (CTX)	a, b, c, d, e	May be insensitive for detection of ceftazidimase-type ESBLs
	Ceftazidime (CAZ)	a, b, c, d, e	Added to increase sensitivity of screening for full range of ESBL with diverse substrate specificities
Dihydrofolate reductase inhibitors	Trimethoprim (TMP)	d	Value as an epidemiological marker, e.g. in the resistance pattern ASuT common among <i>S</i> . Typhimurium.
Macrolides	Azithromycin (AZM)	f	May be considered as a last resort drug for invasive salmonellosis.

ANTIMICROBIALS FOR HUMAN SALMONELLA ISOLATES

	15	ē.			
5-		0	Ĥ	-2	
12		=		-	
	= =	當	= ::	-	

Class	Name (abbreviation*)	Surveillance objectives	Comments
First priority			
Polymyxins	Colistin (COL)	b	Last-resort drug in human medicine and extensively used in animal medicine. Plasmid-mediated resistance detected in <i>E. coli</i> and <i>Salmonella</i> in Europe in 2015. Its chemical properties however cause unreliable results with dilution and render it impossible to test with disk diffusion. Please follow the dilution method agreed between CLSI and EUCAST [10]. Note: Any laboratory that wants to report an isolate as resistant to colistin must get the result confirmed at a reference laboratory that is up to date with the latest method developments for testing of colistin.
Quinolones	Ciprofloxacin (CIP)/pefloxacin (PEF)	a, b, c, d, e	Preferably test ciprofloxacin with broad MIC range. For disk diffusion, EUCAST recommend screening with pefloxacin [11] since ciprofloxacin is poor at detecting low-level fluoroquinolone resistance in <i>Salmonella</i> spp. with this method and nalidixic acid is often not detecting plasmid-mediated fluoroquinolone resistance [12]. Only for isolates having the $aac(\mathcal{O})$ - <i>Ib-cr</i> gene, pefloxacin does not work well.
Sulphonamides	Sulfamethoxazole (SMX)	d	Value as an epidemiological marker, e.g. in the resistance pattern ASuT common among <i>S</i> . Typhimurium. No ECOFF available however due to methodological problems and little harmonisation between disk manufacturers.
Tetracyclines	Tetracycline (TCY)	b, d	Used both in veterinary and human medicine.
	Tigecycline (TGC)	f	

OPTIONAL ANTIMICROBIALS FOR HUMAN SALMONELS SERUM ISOLATES



Optional			
Aminopenicillins	Amoxicillin (AMX)		Alternative for testing and reporting if AMP not tested.
Carbapenems	Ertapenem (ETP)		Many human laboratories test for ertapenem so should be possible to report.
Cephalosporins	Ceftriaxone (CRO)	a, b, c, d, e	Alternative for cefotaxime with disk diffusion method as has similar spectrum of activity.
Combination drugs	Trimethoprim + sulfamethoxazole (co- trimoxazole) (SXT)		No need to test if the substances are tested separately.
Quinolones	Nalidixic acid (NAL)		For laboratories using disk diffusion, nalidixic acid (NAL) can be tested in addition to pefloxacin for easier identification of QRDR mutations (<i>gyr</i> and <i>par</i>) since such mutations may result in clinical treatment failure (Le Hello, Institut Pasteur Paris, personal communication, Sep 2015).

EUCAST CLINICAL BREAKPOINTS AND EPIDEMIOLOGICAL CUT OFF VALUES FOR THE PRIORITY LIST OF ANTIMICROBIALS TO BE TESTED FOR SALMONELLA ENTERICA AS OF 31 AUGUST 2021

Antimicrobial	Criteria based on MIC dilution (mg/L)			Recommended concentration range ¹ (mg/L) (number of wells)	Criteria I (mm)	Disk Ioad (µg)		
	S≤	R>	NWT>		S≥	R<	NWT<	
	Fin	st priority						
Ampicillin (AMP)	8.0	8.0	4.0	1-32 (6)	14	14	18	10
Azithromycin (AZM)	ND	ND	16	2-64 (6)	ND	ND	12	15
Cefotaxime (CTX)	1.0	2.0 (1.0) ²	0.5	0.25-4 (5), 0.25-64 (9) ³	20	17 (21) ²	20	5
Ceftazidime (CAZ)	1.0 ²	4.0 (1.0) ²	2.0	0.25-8 (6), 0.25-128 (10) ³	22 ³	19	20	10
Chlorampenicol (CHL)	8.0	8.0	16.0	8-64 (4)	17	17	19	30
Ciprofloxacin (CIP)	0.06	0.06	0.064	0.015-8 (10)	NA	NA	NA	NA
Colistin (COL)	2.0	2.0	NA	1-16 (5)	NA	NA	NA	NA
Gentamicin (GEN)	2.0	2.0	2.0	0.5-16 (6)	17	17	17	10
Meropenem (MEM)	2.0	8.0	0.06 (0.125) ²	0.03-16 (10)	22	16	27 (28) ²	10
Pefloxacin	NA	NA	NA	NA	24	24	24	5
Sulfamethoxazole (SMX)	ND	ND	ND	8-512 (7)	ND	ND	ND	100
Tetracycline (TCY)	ND	ND	8.0	2-32 (5)	ND	ND	17	30
Tigecycline (TGC)	ND	ND	ND	0.25-8 (6)	ND	ND	16	15
Trimethoprim (TMP)	4.0	4.0	2.0	0.25-16 (7)	15	15	23	5
	Se	cond level to	esting ESBL-p	producers				
Cefepime (FEP)	1.0	4.0	ND		27	24	ND	30
Cefoxitin (FOX)	ND	ND	8.0 ²	0.5-64 (8)	19	19 ²	21	30
	Ор	tional						
Amoxicillin (AMX)	8.0	8.0	4.0		ND	ND	ND	10
Ceftriaxone (CRO)	1.0	2.0 (1.0) ²	0.25		25	22 (23) ²	ND	30
Ertapenem (ETP)	0.5	0.5	ND (0.125) ²	0.015-2 (8)	25	25 ³	ND	10
Nalidixic acid (NAL)	ND	ND	8.0	4-64 (5)	ND	ND	16	30
Trimethoprim- sulfamethoxazole (SXT)	2.0	4.0	ND		14	11	22	1.25- 23.75

SCHEMATIC VIEW OF THE PROPOSED PHENOTYPIC TESTINGATENS FOR DETECTION AND CONFIRMATION OF ESBL-, ACQUIRED SERUM AMPC, AND CARBAPENEMASE-PRODUCING SALMONELLA SPP.

Mechanisms of antibiotics

• Bacteriostatic

Stops growth of the infectious agent but does not kill it The immune system has to kill the bug

Bactericidal

Actively kills the infectious agent (some only growing bacteria)

Definition

Bacteriostatic antibiotic classes

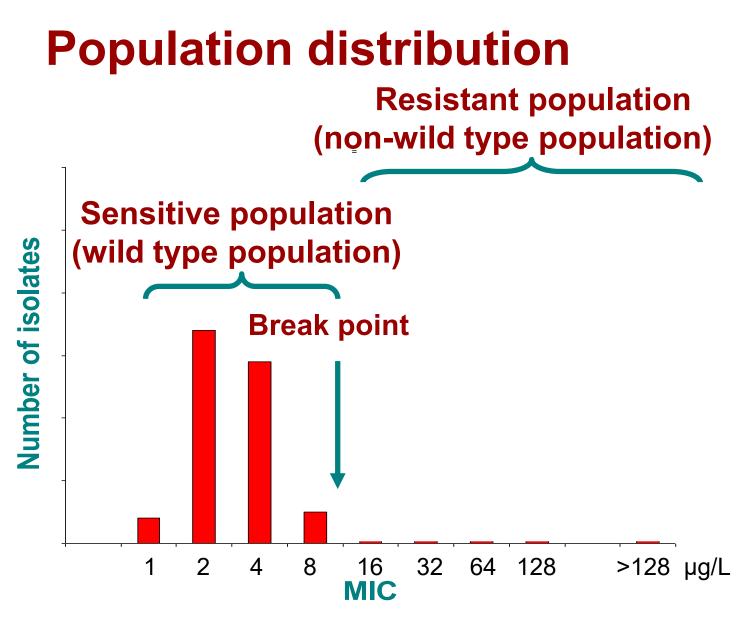
- Tetracyclines
- **Aminoglycosides** (Gentamicin, Apramycin, Neomycin, Spectinomycin, Streptomycin)
- **Sulphonamides** (Sulphamethoxazole)
- Macrolides (Erythromycin)
- Amphenicols (Chlorphenicol, Florphenicol)
- Trimethoprim

Bactericidal antibiotics classes

- **Penicillins** (ampicillin, methicillin)
- Cephalosporins (Cefotaxime, Ceftazidime, Ceftiofur)
- Monobactams (Aztreonam)
- Carbapenems (Imipenem, Meropenem, Ertapenem)
- Quinolones (Nalidixan)
- Fluoroquinolones (Ciprofloxacin)
- **Polymoxins** (Colistin)

Beta-lactams

What is antimicrobial resistance I?


The ability of a microorganism to survive at a given concentration of an antimicrobial agent at which the wild type <u>population</u> of the microorganism would be killed

This is called the "epidemiological/microbiological breakpoint".

EUCAST* defines epidemiological breakpoints – ECOFFs

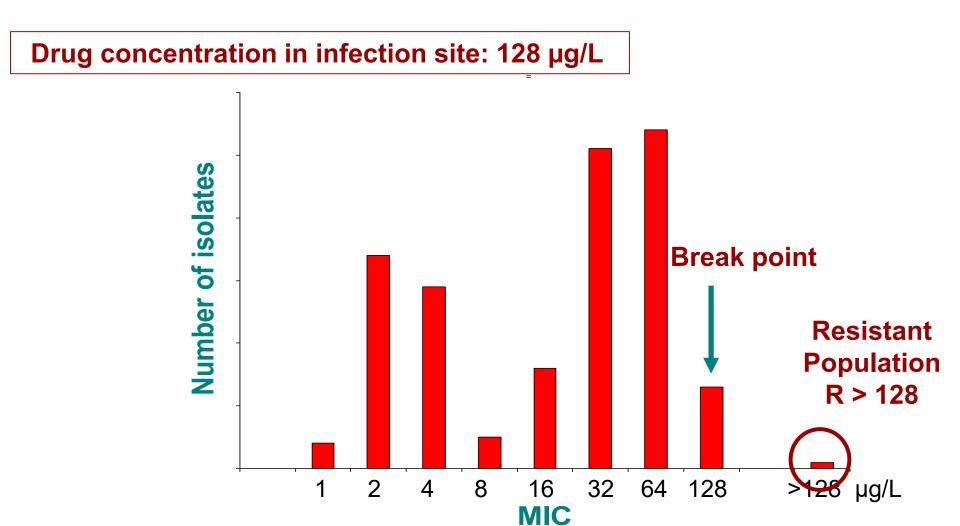
*European Committee on Antimicrobial Susceptibility Testing

Definition

MIC > Breakpoint \rightarrow Resistant (R > 8 or R ≥ 16)

What is antimicrobial resistance II?

The ability of a microorganism to survive treatment with a <u>clinical</u> concentration of an antimicrobial agent in the body.


This is called the **"Clinical breakpoint".**

EUCAST and CLSI* is defining the <u>clinical</u> breakpoints.

* Clinical Laboratory Standards Institute)

Definition

Population distribution

MIC > Breakpoint \rightarrow Resistant (R > 128)

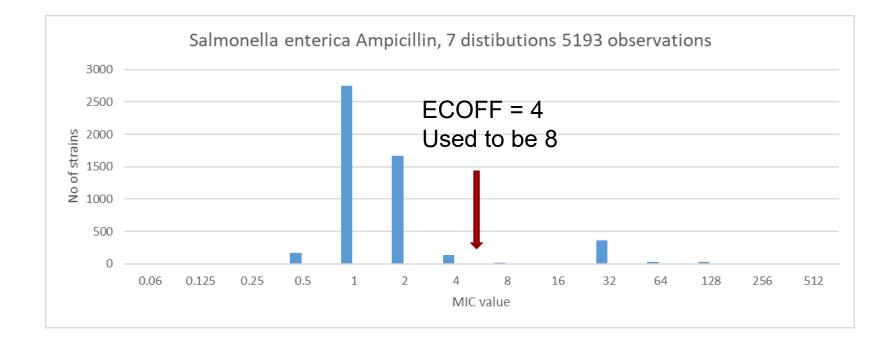
EUCAST DISTRIBUTIONS

Mic distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

Search database

Method		• MIC Olisk diffusion
Antimicrobial		Species
Antimicrobial	~	Salmonella enterica

Elements per page 50 🗸


MIC distributions for Salmonella enterica, 2022-05-15

Species: Salmonella enterica (Method: MIC)

	0.002	0.004	0.008	0.016	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	Distributions	Observations	(T)ECOFF	Confidence interval
Amikacin	0	0	0	0	0	0	0		2358	9523	3498		26	0	1	0	1	0	0	3	15784	(4)	1 - 16
Amoxicillin	0	0	0	0	0	0	0	6	2418	5791	207	6	4	2	14	1148	553	0	0	6	10149	4	1 - 2
Ampicillin	0	0	0	0	0	0	0	12	172	2752	1673	137	16	11	360	32	28	0	0	7	5193	4	1 - 4
Apramycin	0	0	0	0	0	0	0	0	0	2	2	14	97	48	3	0	0	0	0	1	166		
Azithromycin	0	0	0	0	0	0	2		14	116	3672	13721	2577	176	19	0	0	0	0	7	20299	16	4 - 16
Aztreonam	0	0	0	0	12	37	18	3	1	0	0	0	0	0	0	0	0	0	0	2	71	-	
Cefalothin	0	0	0	0	0	0	0	0	3	4	1954	2554	603	162	57	13	10	0	0	4	5360	(16)	
Cefazolin	0	0	0	0	0	0	0	0	4	88	87	38	2	0	0	0	0	0	0	5	219	4	1 - 4
Cefepime	0	0	0	2	38	234	63	33	18	3	2	5	2	0	0	0	0	0	0	4	400	(0.25)	0.06 - 0.25
Cofivimo	0	0	0	0	0	0	10	15		2	0	0	0	0	0	0	0	0	0	1	27		

~

Antimicrobial wild type distributions

Data from EUCAST 2022-05-12

EUCAST CLINICAL BREAKPOINTS: NEW DEFINITIONS OF S, I AND R FROM 2019

- S Susceptible, standard dosing regimen: A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
- I Susceptible, increased exposure*: A microorganism is categorised as "Susceptible, Increased exposure*" when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.
- R Resistant: A microorganism is categorised as "Resistant" when there is a high likelihood of therapeutic failure even when there is increased exposure.
- ATU: The Area of Technical Uncertainty

EUCAST CLINICAL BREAKPOINTS AND EPIDEMIOLOGICAL CUT OFF VALUES FOR THE PRIORITY LIST OF ANTIMICROBIALS TO BE TESTED FOR SALMONELLA ENTERICA AS OF 31 AUGUST 2021

Antimicrobial	imicrobial Criteria based on MIC dilut (mg/L)				Criteria b (mm)	Disk Ioad (µg)		
	S≤	R>	NWT>		S≥	R<	NWT<	
	Fin	st priority						
Ampicillin (AMP)	8.0	8.0	4.0	1-32 (6)	14	14	18	10
Azithromycin (AZM)	ND	ND	16	2-64 (6)	ND	ND	12	15
Cefotaxime (CTX)	1.0	2.0 (1.0) ²	0.5	0.25-4 (5), 0.25-64 (9) ³	20	17 (21) ²	20	5
Ceftazidime (CAZ)	1.0 ²	4.0 (1.0) ²	2.0	0.25-8 (6), 0.25-128 (10) ³	22 ³	19	20	10
Chlorampenicol (CHL)	8.0	8.0	16.0	8-64 (4)	17	17	19	30
Ciprofloxacin (CIP)	0.06	0.06	0.064	0.015-8 (10)	NA	NA	NA	NA
Colistin (COL)	2.0	2.0	NA	1-16 (5)	NA	NA	NA	NA
Gentamicin (GEN)	2.0	2.0	2.0	0.5-16 (6)	17	17	17	10
Meropenem (MEM)	2.0	8.0	0.06 (0.125) ²	0.03-16 (10)	22	16	27 (28) ²	10
Pefloxacin	NA	NA	NA	NA	24	24	24	5
Sulfamethoxazole (SMX)	ND	ND	ND	8-512 (7)	ND	ND	ND	100
Tetracycline (TCY)	ND	ND	8.0	2-32 (5)	ND	ND	17	30
Tigecycline (TGC)	ND	ND	ND	0.25-8 (6)	ND	ND	16	15
Trimethoprim (TMP)	4.0	4.0	2.0	0.25-16 (7)	15	15	23	5
	Se	cond level to	esting ESBL-p	producers				
Cefepime (FEP)	1.0	4.0	ND		27	24	ND	30
Cefoxitin (FOX)	ND	ND	8.0 ²	0.5-64 (8)	19	19 ²	21	30
	Ор	tional	·			· · ·		
Amoxicillin (AMX)	8.0	8.0	4.0		ND	ND	ND	10
Ceftriaxone (CRO)	1.0	2.0 (1.0) ²	0.25		25	22 (23) ²	ND	30
Ertapenem (ETP)	0.5	0.5	ND (0.125) ²	0.015-2 (8)	25	25 ³	ND	10
Nalidixic acid (NAL)	ND	ND	8.0	4-64 (5)	ND	ND	16	30
Trimethoprim- sulfamethoxazole (SXT)	2.0	4.0	ND		14	11	22	1.25- 23.75


HOW DO WE MEASURE ANTIMICROBIAL SUSCEPTIBILITY IN VITRO?

Phenotypic methods

- Agar diffusion method
 - Disks (tablet) mm
 - Gradient strips quantitative

Dilution methods (quantitative)

- Liquid media
- MicroBrothDilution
- Solid media

"OPEN" AST TESTING METHODS

 Dilution methods - minimum inhibitory concentration (MIC) is determined (mg/L) is considered the gold standard for AST by EUCAST

ISO 20776-1:2019

 Disk diffusion – inhibition zones in mm - according to EUCAST guidelines v10 (1 January 2022)

AST TESTING WITH PROPRIETARY METHODS

- Gradient strips (MIC) according to EUCAST and producer – should be validated
- Other methods, e.g. Trek sensititre, Vitek should be validated

Validation protocol:

ISO 20776-2:2021

LINKS TO EUCAST

- Website EUCAST: EUCAST
- Disk diffusion methodology <u>EUCAST: Disk</u> <u>diffusion methodology</u>
- Broth microdilution reading guide <u>EUCAST: MIC</u> determination
- QC tables <u>EUCASTQuality: Control</u>
- Breakpoint table
 - EUCAST: Clinical breakpoints and dosing of antibiotics
 - V. 12 v 12.0 Breakpoint Tables.xlsx (live.com)
- **ECOFFS** EUCAST: MIC and zone distributions and ECOFFs
- Warnings <u>EUCAST: Warnings!</u>
- Instruction videos Instruction videos

Aims:

- support the implementation of the harmonized EU AST protocol for Salmonella and Campylobacter
- assess the quality of the AST data obtained using MIC and/or DD methods in NPHRLs across Europe
- evaluation of serotyping of Salmonella

Objectives:

- identify common laboratory problem(s)
- assess the overall comparability of routinely collected AST results from European NPHRLs

EQA6-AST - 2020

EQA6-AST for Salmonella

- Participants Laboratories in the FWD-Net
- Laboratories were asked to follow the harmonised EU AST protocol whenever possible
 - Eight strains for AST testing
 - Five mandatory antimicrobials:

Ampicillin, Cefotaxime, Meropenem, Cipro/Pefloxacin, Tetracycline

- Possible to report ESBL-, acquired AmpC-, and carbapenemase status of the test strains – both pheno- and genotypes
- Possible to report serotyping results

Selection of Salmonella test strains

- Represented commonly reported human strains in the EU/EEA
- Were stable during the testing period in the organising laboratory
- Expected MIC and DD results were established by the EQA provider following the harmonized EU AST protocol
- DD results established using disks from Oxoid by EQA provider
- MIC values established using the micro-broth dilution based MIC system from TREK diagnostic systems[©] from Thermo Scientific by EQA provider

Data analysis

- Test results were compared to the expected results
 - Salmonella: MIC results within +/- one dilution difference and DD results within +/- 3 mm difference were evaluated as correct
- MIC results that were not in the relevant concentration range for comparison with expected results were not evaluated (ND)
- Qualitative results interpreted using EUCAST ECOFF and clinical breakpoints

Salmonella

25 EU/EEA countries

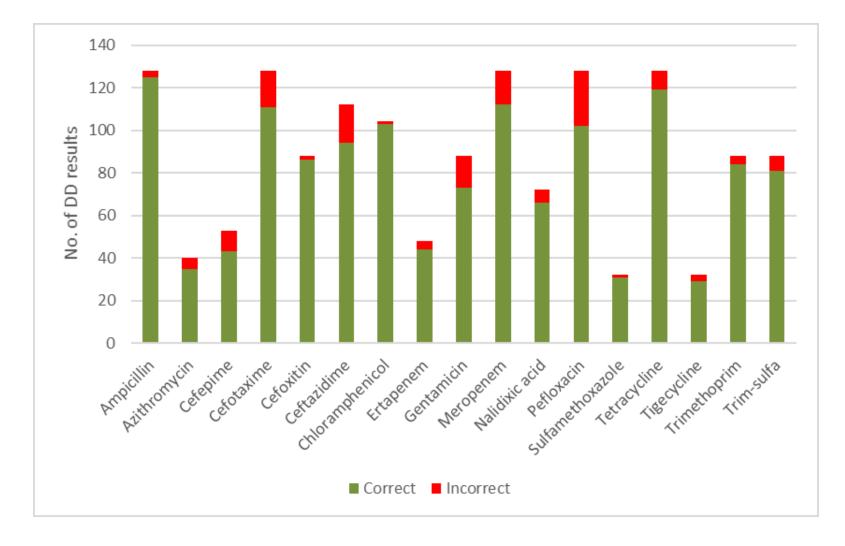
- 16 reported disk diffusion results
- 17 reported MIC results broth dilution or gradient strip

Salmonella test strains EQA6 AST

Strain	Serotype	Microbiological resistance profile (NWT)*	Genotype, selected resistance genes
EQA_AST.S20.0001	Chester	CHL, CIP, COL, PEF, SMX, TCY, TMP	
EQA_AST.S20.0002	Dublin	AMP, AZM, COL, SMX, TCY	
EQA_AST.S20.0003	Stanley	AMP, AZM, CHL, CIP, GEN, PEF, SMX, TMP	
EQA_AST.S20.0004	Infantis	AMP, CEP, CAZ, CTX, FOX, CHL, CIP, GEN, PEF, NAL, SMX, TCY, TMP	blaCTX_M_65
EQA_AST.S20.0005	Rissen	AMP, CEP, CTX, CAZ, CHL, CIP, GEN, NAL, PEF, SMX, TEM, TCY	blaCTX_M_55
EQA_AST.S20.0006	Typhimurium	AMP, CEP, CTX, CHL, CIP, GEN, PEF, SMP, TCY, TMP	mcr_9, blaCTX_M_9
EQA_AST.S20.0007	Enteritidis	AMP, CHL, CIP, PEF, NAL, TCY	
EQA_AST.S20.0008	Heidelberg	AMP, AZM, CEP, CTX, CAZ, CHL, CIP, PEF, SMP, TCY, TMP	blaCTX_M_123

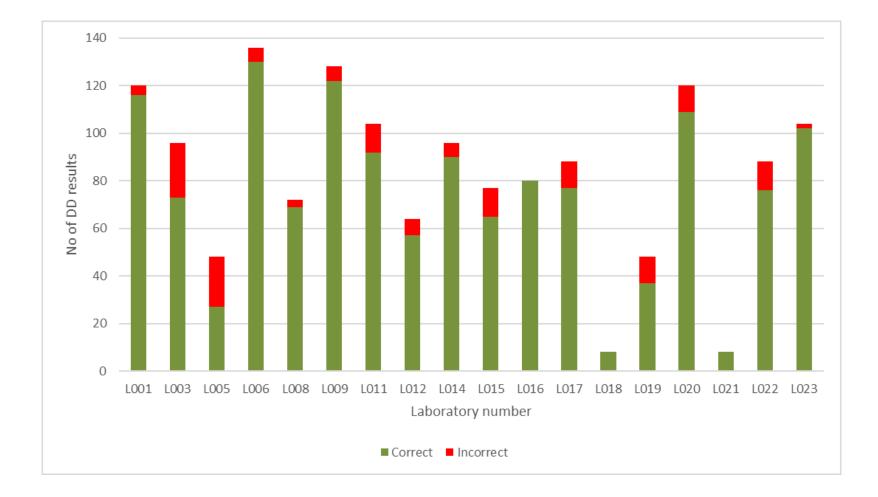
* AMP: ampicillin, AZM: Azithromycin, CEP: cefipime, CAZ: Ceftazidime, CHL: chloramphenicol, CIP: ciprofloxacin, COL: colistin, CTX: cefotaxime, FOX: cefoxitin, PEF: peflocacin, MEM: meropenem, NAL: nalidixic acid, TCY: tetracycline, TMP: trimethoprim

EQA6-AST SALMONELLA – OVERALL RESULTS SERUM



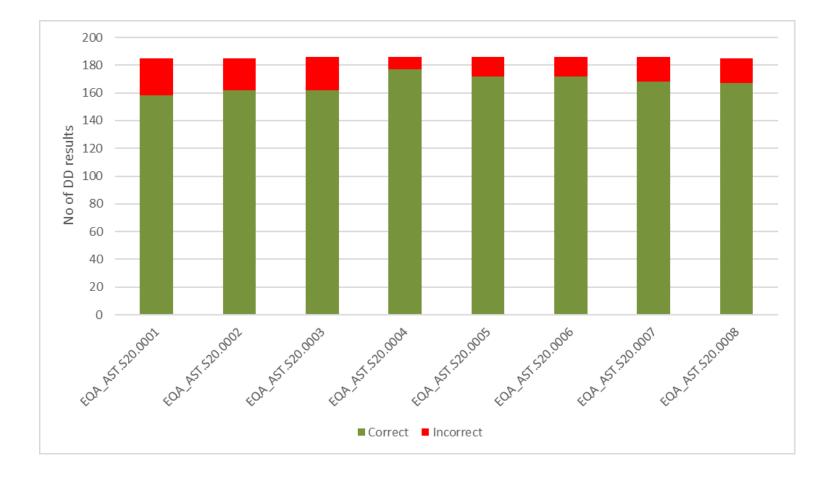
DD and MIC results evaluated against expected quantitative and expected qualitative results using ECOFF's and clinical breakpoints

Results by DD assay	All antimicrobials	Mandatory	Optional	
Expected value	1338/1485 (90%)	569/640 (89%)	769/845 (91%)	
ECOFF	1204/1264 (95%)	616/640 (96%)	588/624 (94%)	
Clinical breakpoints	1138/1181 (96%)	503/512 (98%)	635/669 (95%)	
NA (No breakpoints)	221/304	0/128	221/176	
Excluded	48	0	48	
total	1533			
Results by MIC determination	All antimicrobials	Mandatory	Optional	
Expected value	1240/1329 (93%)	433/458 (95%)	807/871 (93%)	
ECOFF	1353/1440 (94%)	498/511 (97%)	855/929 (92%)	
Clinical breakpoints	911/973 (94%)	399/407 (98%)	512/566 (90%)	
NA (No breakpoints)	0/467	0/104	0/363	
ND	111	53	58	
Excluded	29	24	6	
Total	1469			


Salmonella: 1485 quantitative DD results - antimicrobials

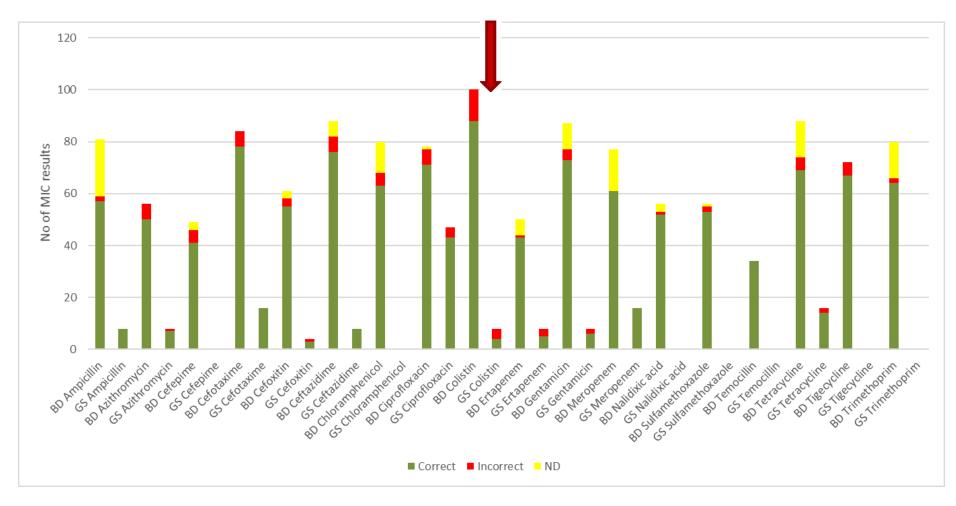
1338/1485 = 90% correct DD results

Salmonella:1485 quantitative results DD – laboratory All antimicrobials



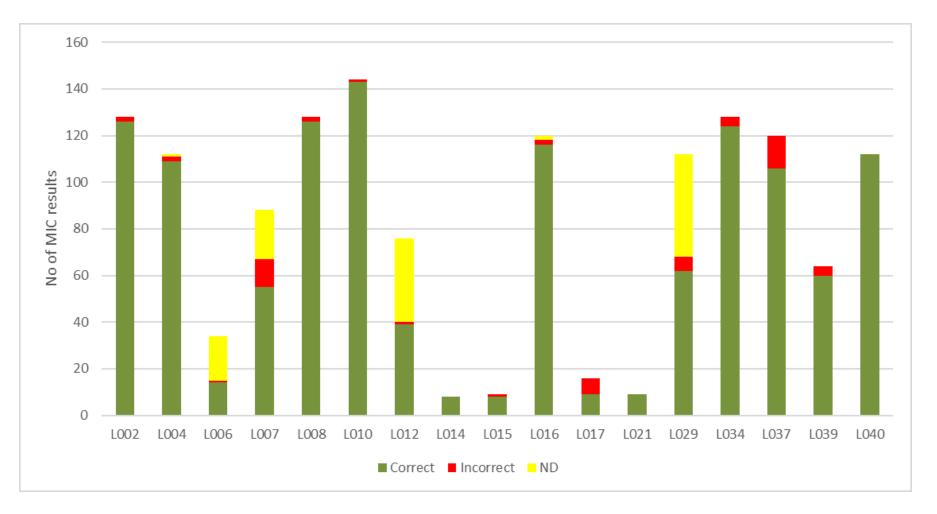
STATENS

INSTITU


1338/1485 = 90% correct DD results

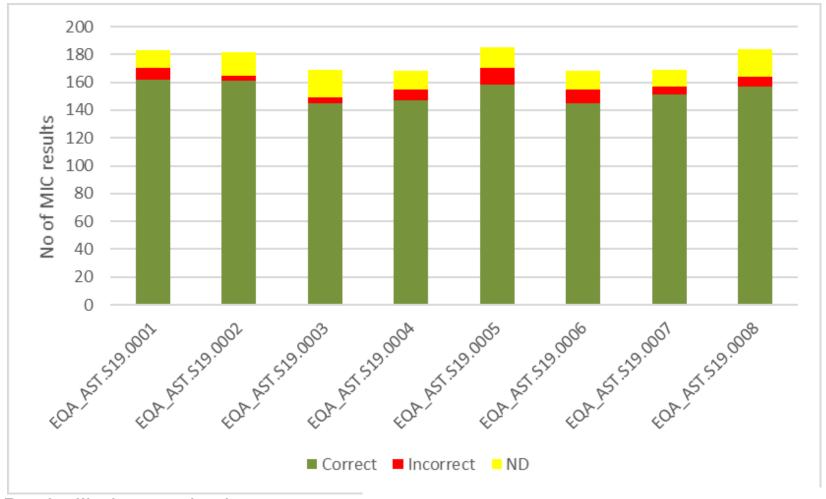
Salmonella:1485 quantitative DD results for test strains Statens Serum NSTITUT

1338/1485 = 90% correct DD results


Salmonella: 1440 quantitative MIC results – antimicrobials and methods

BD: Broth dilution methods GS: Gradient strip methods

Overall 93% of evaluated MIC results correct Most ND-results: correct ECOFF interpretation


Salmonella: 1440 quantitative MIC results – Laboratories SERUM All antimicrobials

BD: Broth dilution methods GS: Gradient strip methods

Overall 93% of evaluated MIC results correct Most ND-results: correct ECOFF interpretation

Salmonella: 1440 quantitative MIC results – by strains All antimicrobials

BD: Broth dilution methods GS: Gradient strip methods

Overall 93% of evaluated MIC results correct Most ND-results: correct ECOFF interpretation

Strain	Expected phenotype	Number of laboratories reporting phenotype	AmpC	ESBL	Carbapenemase	Carbapenemase, AmpC	ESBL, Carbapenemase	ESBL, AmpC	ESBL, AmpC, Carbapenemase
EQA_AST.S20.0001		2		2					
EQA_AST.S20.0002									
EQA_AST.S20.0003		1		1					
EQA_AST.S20.0004	ESBL	20		17				3	
EQA_AST.S20.0005	ESBL	20		19				1	
EQA_AST.S20.0006	ESBL	19		18				1	
EQA_AST.S20.0007		1		1					
EQA_AST.S20.0008	ESBL	19		18				1	
Total		82							

25 laboratories participated in the EQA

A few of the phenotypes could not entirely be justified from the reported data

SALMONELLA SEROTYPING RESULTS

	Serotype	Reported serotype		
Strain		Correct	Incorrect	ncorrectly reported serotype
EQA_AST.S20.0001	Chester	19	1	Chartres
EQA_AST.S20.0002	Dublin	20		
EQA_AST.S20.0003	Stanley	19	1	Typhimurium
EQA_AST.S20.0004	Infantis	20		
EQA_AST.S20.0005	Rissen	19	1	Montevideo
EQA_AST.S20.0006	Typhimurium	19	1	Paratyphi B
EQA_AST.S20.0007	Enteritidis	20		
EQA_AST.S20.0008	Heidelberg	20		
Total		156	4	

Derived from WGS or based on slide agglutination

Conclusions Salmonella EQA6-AST

- Good correspondence between expected and reported results
- Some laboratories deviated from the recommended testing range (MIC) and disk concentrations specified in the harmonized EU protocol.
- Some laboratories had issues with the results for the control strain ATCC 25922
- Colistin (MIC) results could be improved in some laboratories
- Results indicate that it is possible to compare phenotypic DD and MIC AST Salmonella results from <u>NPHRLs</u> across Europe

On this course you are going to work with the EQA7-AST strains

Thank you for your attention !!