

FWD AMR· RefLabCap

WGS-based typing methods and nomenclature

Egle Kudirkiene

2nd multidisciplinary training workshop October 2023

Introduction to WGS-based bacteria genotyping

SNP: reference - based single nucleotide polymorphism analysis CSI Phylogeny tool open source and easy to use

cgMLST: core genome multi-locus sequence typing SeqSphere and EnteroBase tools potential for standartisation and result sharing between the laboratories

Introduction

Bacteria genotyping

Genotyping is the process of determining differences in the **genetic make-up** (genotype) of an isolate by examining its DNA sequence by comparing it with another isolates sequence or a reference sequence.

Clone

Isolates of bacterial species that are <u>indistinguishable</u> in genotype are assigned as a <u>clone</u>

Cluster

Instead, in outbreak investigations we use <u>clusters</u> of isolates with <u>nearly</u> <u>identical</u> genomes to consider pathogen mutation rates in different hosts/environments and time

Cluster cut-offs for cgMLST and SNP analyses:

- Salmonella depends on the serovar
 - 0-3 ADs/SNPs in clonal serovars and
 - up to 5 AD/SNP in other serovars
- Campylobacter 5 or less ADs/SNPs

Proposed protocol for whole genome sequencingbased analysis for detection and tracing of epidemic clones of antimicrobial resistant Salmonella and Campylobacter

to be used for national surveillance and integrated outbreak investigations by NRLs for public health

8 July 2022

Reference-based cgSNP (CSI Phylogeny)

Schematic CSI Phylogeny workflow

Saltykova et al. 2018

PLoS One. 2018 Feb 6;13(2):e0192504. doi: 10.1371/journal.pone.0192504

Reference-based SNP analysis using CSI Phylogeny

Center for Genomic Epidemiology

Input data

Upload reference genome (fasta format) Note: Reference genome must not be compressed.

Vælg fil Der er ingen fil valgt

Include reference in final phylogeny.

Upload read files and/or assembled genomes (fasta or fastq format)

Please do not upload more than 50 isolates

Note: Read files must be compressed with gzip (compressed files often ends with .gz). If you get an "Access forbidden. Error 403". Make sure the start of the web adress is https and not just http. Fix it by clicking	Dowload phylogeny as: Newick PDF SVG
Name Size	Download the filtered SNP calls in Variant Calling Format (VCF): Note: VCF files are compressed with gzip.
O Upload	Download matrix of SNP pair counts: Dowload matrix as: TXT EPS

New Reset

0.22337 ERR2849912 R1.sorted

540485 R1.sorted

0501 R1.sorted

ERR1540547 R1.sorted

0.5

1.73123

⁰ERR1540398 R1.sorted

0 00055 ERR1540425 R1.sorted

06884540399 R1.sorted

¹⁰ERR1540403 R1.sorted 0.01132 1540406 R1.sorted

0_0 reference

ERR1540582 R

1.5

Read mapping to the reference genome

How to choose the reference

The reference should be somewhat similar to the isolates you test (>90%, if possible):

- well annotated, high quality, closed genome of same or similar ST (7 gene MLST)
 - use KmerFinder (CGE Tools) to search for ref. genome
- draft genome sequence from own dataset (e.g. representing the first case)
- consensus sequence of all genomes in own dataset

Genotyping using SNP (e.g. CSI Phylogeny)

Clone

1

Clone 2

Cluster

Pairwise similarity matrix (.txt format) Ref. Genome Genome 2 Genome 1 Genome 3 Genome 4 Ref. Genome 3 3 9 0 0 Ref. genome 3 3 9 Genome 2 0 0 9 3 Genome 1 3 0 Genome 2 0 3 3 9 Genome 3 0 0 Genome 1 9 9 9 Genome 4 9 0 Genome 3

Phylogenetic tree (.newick file format)

The user defines clusters based on selected SNP thresholds, e.g. 0-3 SNPs

Genome 4

	Ref. Genome	Genome 2	Genome 1	Genome 3	Genome 4	
Ref. Genome	0	0	3	3	9	
Genome 2	0	0	3	3	9	
Genome 1	3	3	0	0	9	
Genome 3	3	3	0	0	9	
Genome 4	9	9	9	9	0	

cgMLST (SeqSphere and Enterobase)

Core genome multi-locus sequence typing (cgMLST)

Each gene variant has an allele number

Sequence Type: 19

	Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele
	aroC	100	100	501	501	0	aroC_10
	dnaN	100	100	501	501	0	dnaN_7
	hemD	100	100	432	432	0	hemD_12
	hisD	100	100	501	501	0	hisD_9
	purE	100	100	399	399	0	purE_5
	sucA	100	100	501	501	0	sucA_9
	thrA	100	100	501	501	0	thrA_2
	Gene08						
	Gene09						
	Gene10						
	Gene11						
	Gene12						
	Gene13						
	Gene14						
	Gene15						
.)	Gene16						
	Gene17						
	Gene18						
	Gene19						
	Gene20						
	Gene21						
	Gene22						
	Gene23						

cgMLST schemes and allele calling methods (most common)

Cluster detection using cgMLST

Clusters in SeqSphere

• Default cut-offs

HierCC in EnteroBase scheme for Salmonella using default cut-offs

• 0, 2, 5, 10, 20, 50, 100, etc.

Same thresholds can be used for cluster detection

HOWEVER

To assure proper outbreak definitions, the users may and often choose different cluster cut-offs depending on the species/serovar and in accordance to the epidemiological data of time, place and person.

Assignment to clusters by SeqSphere

Default cluster cut-off is ≤6

Clusters of samples with maximum six alleles distance are shaded

AD of ≤6 is **not suitable** to recognise an outbreak of RT 181

Assignment to HierCC by EnteroBase

The clusters are assigned **stable cluster group numbers** at different, fixed cgMLST allele distances. Salmonella for instance, has cut-offs such as 0, 2, 5, 10, 20, 50, 100, etc.

Wo	orkspace 🗢 🛛 E	xperiment 🤝 🦊 🏹	달 🔍 🏹 🏹 🛃	🗟 💽 Workspa	ace:Dublin_glob	al_ST10 Rows	Total: 1761 Fil	tered:1696			
			1		Edit Mode: 🗆	Experimental [Data cgMLST V2	+ HierCC V1	-		
•	ST e	HCO (indistinguis	HC2 e	HC5 e	HC10 e	HC20 e	HC50 e	HC100 o			
0	35462	35462	35462	719	52	25	25	25			
۲	6020	6020	6020	6020	52	25	25	25	Cluster based on H10, but not on		
۲	35014	35014	35014	35014	15910	15910	25	25	H5, H2, H0.		
۲	34712	34712	34712	34712	34712	15406	25	25			
۲	34679	34679	16899	719	52	25	25	25	The year desides which threshold		
۲	33958	33958	33958	33958	33958	33958	25	25	The user decides which threshold		
۲	33956	33956	16899	719	52	25	25	25	to use for recognizing the same		
۲	33752	33752	33752	33752	33752	33752	33752	33752	outbreak/cluster group		
۲	32538	32538	32538	32538	52	25	25	25			
۲	31161	31161	16899	719	52	25	25	25			
۲	31161	31161	16899	719	52	25	25	25	Cluster! And even a		
۲	23212	23212	23212	23212	23212	17337	25	25	clone!		
۲	19728	19728	19728	15406	15406	15406	25	25			
۲	19652	19652	15751	15751	15751	13072	25	25	Same ST and cluster		
۲	19648	19648	19648	19648	19648	13072	25	25			
۲	19647	19647	15751	15751	15751	13072	25	25	group at any cut-off		
۲	19637	19637	19637	19637	15910	15910	25	25			
			1						https://enterobase.readthedocs.io/en/latest/features/clustering.htm		

Summary

Reference-based SNP-based typing

- Species non-specific
- Require user defined reference genome
- The genetic diversity of the reference and dataset influence the discriminatory power of the method
- SNPs in the whole genome, both coding and non-coding sequences
- User defined genotypes. User defined cluster cut-offs

cgMLST-based typing

- Species specific
- No reference genome required. Requires database that is updated continuesly
- Different allele calling methods may result in different allelic profile
- Allelic differences between the genes under the analysis
- The unique combination of alleles is the sequence type (ST1-STXXX...). Default and user defined cluster cut-offs