

EQA1-WGS-AMR and RingTrial1-WGS-AMR results

Eva Litrup, PhD Małgorzata Ligowska-Marzęta (Gosia), PhD Karen Loaiza Conza, MSc Eng

> <u>Foodborne Infections (FBI)</u> Statens Serum Institut SSI

Outline

- Introduction about FWD AMR-RefLabCap
- EQA1-WGS-AMR
 - Sequencing QC
 - Tools and databases
 - Result examples
- RingTrial1
 - Tools and databases
 - Result examples
- Conclusions, lessons learned and future plans

FWD AMR-RefLabCap

Provision of EU networking and support for public health reference laboratory functions for antimicrobial resistance in *Salmonella* and *Campylobacter* in human samples

- The project is run under a contract with HaDEA on behalf of DG SANTE and in close cooperation with ECDC
- 4-year project: 2021-2024
- Contractors:
 - Statens Serum Institut (SSI)
 - Project leader: Eva Møller Nielsen, Section of Foodborne Infections
 - National Food Institute, Technical University of Denmark (DTU)
 - René Hendriksen and Birgitte Helwigh, Research group for global capacity building

Support countries to enhance the validity and accuracy of surveillance data in order to inform concerted actions against AMR at EU level and enable better detection and control of cross border threats to human health from AMR

Project team

• Statens Serum Institut (SSI)

- Eva Møller Nielsen: Project manager
- Egle Kudirkiene: Priority countries
- Susanne Schjørring: Network tasks
- Eva Litrup: Methods tasks
- Other team members
 - Jeppe Boel
 - Malgorzata Ligowska-Marzeta
 - Mia Torpdahl
 - Karen Loaiza Conza
- Technical University of Denmark (DTU)
 - René Hendriksen: Training tasks
 - Birgitte Helwigh: Coordination of DTU activities
 - Other team members
 - Ana Rita Bastos Rebelo
 - Jette Sejer Kjeldgaard
 - Susanne Karlsmose Pedersen

The tasks are organised in groups/teams:

- Management team
- NRL Network team
- Training team
- Methods team
- Priority countries team

EQA vs RingTrial in FWD AMR-RefLabCap

EQA1-WGS-AMR

To evaluate and ensure the quality and comparability of the WGS-based data produced by the NRLs

> Live bacteria DNA purification + WGS required

RingTrial1

To investigate the outcome of different databases, tools and bioinformatic pipelines used by NRLs and enable comparison of their performance in AMR gene and point mutation detection

Analyze provided sequences

EQA1-WGS-AMR - First annual *in vitro* external quality assessement scheme for WGS-based resistome profiling of *Salmonella* and *Campylobacter*

- 39 participants invited
- 25 participants submitted results
- 3 Salmonella and 3 Campylobacter strains
- Participants were asked to sequence strains and analyse sequences for AMR genes and point mutations
- Reporting results through an online platform
- Aim of this and following EQAs is to support the further development and implementation of WGS in the NRLs and evaluate the quality and comparability of the WGS-based data produced

Service contract for the provision of EU networking and support for public health reference laboratory functions for antimicrobial resistance in *Salmonella* species and *Campylobacter* species in human samples

SC 2019 74 09

Deliverable T1.16.1

Report on the first annual *in vitro* external quality assessment scheme for WGS-based resistome profiling of *Salmonella* and *Campylobacter*

> Version nº: 1 Date: 16-12-2022

Salmonella and Campylobacter strain characteristics

Strain	Serotype	ST	Genes	Point mutations
EQA_AST.S22.0004	Monophasic Typhimurium	34	aac(3)-IId, aph(3'')-Ib, aph(6)-Id, blaCTX-M-55, blaTEM-1, floR, mcr-3, qnrS1, sul, tet(A)	<i>gyrA</i> S83Yl
EQA_AST.S22.0005	Heidelberg	15	aadA, blaCTX-M-123, blaTEM-1 cmlA1, dfrA12, floR, fosA, mph(A) qacL, qnrS1, sul, tet(M)	None functional
EQA_AST.S22.0008	Senftenberg	14	aac(3)-II, aac(6')-Ib, aph(3'')-Ib, aph(6)-Id blaCMY-4, blaNDM-1, blaSHV-12, blaTEM-1, ble, qacE, sul1	gyrA D87G gyrA S83Y parC S80I

Table 1. Characteristics of the Salmonella strains selected for the EQA1-WGS-AMR

Table 2. Characteristics of the Campylobacter strains selected for the EQA1-WGS-AMR

Strain	Species	ST	Genes	Point mutations
EQA_AST.C22.0001	C. jejuni	7433	aad9, aph(2'')-If, aph(3')-III,	<i>gyrA</i> T86I,
			blaOXA-193, cat, tet(O)	50S_L22 A103V
EQA_AST.C22.0004	C. coli	872	aac(6')-aph(2''),	gyrA T86I
			aadE, ant(6)-Ia, aph(3')-III,	
			blaOXA-193, sat4, tet(O)	
EQA_AST.C22.0005	C. coli	872	aadE-Cc, blaOXA-489,	gyrA T86I,
			tet(O)	23S_A2075G

Sequencing QC - Salmonella

Genome size

Figure 1. The size of assembled genomes of each strain: orange – EQA_AST.S22.0004, yellow – EQA_AST.S22.0005 and green – EQA_AST.S22.0008.

Figure 2. Total number of contigs in Salmonella strains: orange – EQA_AST.S22.0004, yellow – EQA_AST.S22.0005 and green – EQA_AST.S22.0008.

Figure 3. The N50 value for all three strains: orange – EQA_AST.S22.0004, yellow EQA_AST.S22.0005 and green – EQA_AST.S22.0008.

Sequencing QC - Campylobacter

Genome size 2,0 1,8 1,6 1,4 Genome size (Mb) 1,2 1.0 0,8 0,6 0,4 0,2 0.0 ENOTO END20 ENDZ ENDIT END26 ENDZI ENDIZ ENDOS EN013 ENDO9 ENDOZ ENDIS ENDOS ENDOA ENDO1 ENDIA EN019 ENNDZA ENDOS END 16 ENDOI EQA_AST.C22.0001 EQA_AST.C22.0004 EQA_AST.C22.0005

Figure 6. The size of assembled genomes of each strain: orange – EQA_AST.C22.0001, yellow – EQA_AST.C22.0004 and green – EQA_AST.C22.0005. No data available for strain EQA_AST.C22.0005 for laboratory FWD20 due to failing of sequencing.

Figure 7. Total number of contigs in Campylobacter strains: orange – EQA_AST.C22.0001, yellow – EQA_AST.C22.0004 and green – EQA_AST.S22.0005. No data available for strain EQA_AST.C22.0005 for laboratory FWD20 due to failing of sequencing.

Figure 8. The N50 value for all three strains: orange – EQA_AST.C22.0001, yellow – EQA_AST.C22.0004 and green – EQA_AST.C22.0005. No data available for strain EQA_AST.C22.0005 for laboratory FWD20 due to failing of sequencing.

Tools and Databases

AMRFinderPlus on SPAdes assemblies

KMA with in-house developed Point

Mutation database*

AMRFinderPlus on SPAdes

assemblies

ARIBA/ABRicate with ResFinder database

*Based on PointFinder database

FWD01Amr

FWD01Res

Tools used for Salmonella gene and point mutation detection

Point mutation identification

Tools used for Campylobacter gene and point mutation detection

Results – genes Salmonella

Table 5. Genes found in strain EQA_AST.S22.0004, Green – ResFinder, Red – AMRFinder, Yellow – mixed methods, Blue – single other method different from ResFinder and AMRFinder.

	VD01Res	VD17	VD21	/D15	1006	/D13	VD07	V D03	1D16	/D01Amr	1D08	1 DI 1	VD25	VD10	/D02	/D23	1D04	D22	VD14	VD19	VD24	1D26	1005
Lab#	F	5	E .	F٧	F٧	F٧	F	5	E	F٧	F٧	î.	5		F٧	F٧	F٧	F٧	5	5	E	F	FV
				R	es Finde	er				AMR	inder				N	lixed r	nethod	s				Oth	ier
aac(3)-IId	х	х	Х	х	х	х	X	х	<u>y</u>	х	х	х	х	Х	х	х	х	х	х	х	Х	x	x
aac(6)-laa *												х						х					
aac(6')-laa		х		х		х	х	х	х						х		х		х				х
aph(3)-1b *												х											
aph(3')-1b *																							х
aph(3'')-Ib	х	х	х	х	х	х	х	х	х	х	х			х	х	х		х	х	х	х	х	
aph(3)-Id												х											
aph(6)-Id	х	х	х	х	х	х	х	х	х	х	х			х	х	х		х	х	х	х	Х	
aph(6')-Id *																							х
blaCTX-M-55	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	Х	х	х	х	х
blaTEM-1	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
floR	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
mcr-3	х	х	х	х		х	х	х	х	х		х	х	х	х	х	х	х	х	х	х		х
mdsA																						х	
mdsB																						х	
qnrS1	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х
sul	х	Х	Х	Х	х	Х	Х	х	х	Х		Х	х	х	х	Х	х	х	Х	х	Х	х	х
tet(A)	х	х	х	Х	х	Х	Х	х	х	х		х	х	х	х	Х	х	х	х	х	х	х	х

* - Correct gene, but likely reported with a typo

Results – genes Salmonella

Table 7. Genes found in strain EQA_AST.S22.0005, Green – ResFinder, Red – AMRFinder, Yellow – mixed methods, Blue – single other method different from ResFinder and AMRFinder.

	Lab#	FWD01Res	FWD17	FWD21	FWD15	FWD06	FWD13	FWD07	FWD03	FWD16	FWD01Amr	FWD08	FWD11	FWD25	FWD10	FWD02	FWD23	FWD04	FWD22	FWD14	FWD19	FWD24	FWD26	FWD05
					R	es Fiinde	er				AMR	inder				N	lixed r	nethod	s				Oth	her
	aac(6')-laa		х		х		х	х	х	х			х			х			х	Х				х
	aadA	х	х	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х
<	ant(3'')-la	х		х	Х	х														Х				х
	blaCTX-M-123	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
	blaTEM-1	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	Х	х	х	х	х
	cmlA1	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х
	dfrA12	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х
	floR	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х
	fosA	х	х	х	х			х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х
	mph(A)	х		х		х	х	х	х	х	х	х	х	х	х	х	х	х	х		х	х	х	х
$\boldsymbol{<}$	qacL										х				х	х								
	qnr51	х	х	х	х	х	х	х	х	х	х		х	х	х	Х	х	х	х	х	х	х	х	х
	sul	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х
	tet(M)	х	х	х		х	х			х	х		х	х	х	х	х	х	х			х	х	х

Results – PM Salmonella

Table 8. Point mutation reported in strain EQA_AST.S22.0005, Green – ResFinder, Red – AMRFinder, Yellow – mixed methods, Blue – single other method different from ResFinder and AMRFinder.

Lab#	FWD17	FWD26	FWD15	FWD06	FWD13	FWD07	FWD14	FWD03	FWD16	FWD08	FWD02	FWD01Amr	FWD25	FWD11	FWD10	FWD23	FWD04	FWD22	FWD19	FWD24	FWD01Res	FWD21	FWD05
					Re	esFind	er					AF			M	lixed n	netho	ds				Other	
parC T57S	х		х	х	х	х	х	х	х					х	х		х	х	х				

It was suggested previously that this mutation could be a naturally occurring compensatory mutation (Eaves et al., 2004) and there is currently no consensus whether it contributes to quinolone resistance in *Salmonella* spp. (Chang et al., 2021). The mutation is not present in the AMRFinderPlus database but it is present in the PointFinder database.

Results – genes *Campylobacter*

Table 15. Genes found in strain EQA_AST.C22.0005, Green – ResFinder, Red – AMRFinder, Yellow – mixed methods, Blue – single other method different from ResFinder and AMRFinder.

Lab#	FW D01Res	FW D17	FW D21	FW D13	FW D09	FW D07	FW D03	FW D16	FW D01Amr	FW D23	FW D26	FW D08	FW D10	FW D02	FW D04	FW D22	FW D14	FW D19	FW D24	FW D12	FW D05	FW D20
				ResF	inder				AMR	inder				Mixe	d met	hods				Oth	her	
aadE *																				х		
aadE-Cc	х	х	х		х	х	х	х	х		х		х	х	х	х	х	х	х		х	
ant(6)-Ig																				х		
blaOXA-489	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х		х	х	х	
blaOXA-61																				х		
blaOXA-66																				х		
tet(O)	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	

*Correct gene identified, but likely with a typo

Results – PM Campylobacter

Table 14. Point mutations reported in strain EQA_AST.C22.0004, Green – ResFinder, Red – AMRFinder, Yellow – mixed methods, Blue – single other method different from ResFinder and AMRFinder.

Lab#	FWD26	FWD08	FWD13	FWD09	FWD10	FWD02	FWD07	FWD20	FWD14	FWD16	FWD03	FWD01Amr	FWD23	FWD17	FWD04	FWD22	FWD19	FWD24	FWD01Res	FWD21	FWD12	FWD05
					Re	sFind	ler					AMRE	inder		Mixe	d met	hods			Ot	her	
gyrA T86I	х	х				х	х	х				х	х		х	х	х		х	х	х	
gyrA_2(p.T86I)			х	х	х				х	х				х								

The gyrA T86I substitution was reported by 17 out of 20 participants in strain EQA_AST.C22.0004. It is worth mentioning that 6 out of those 16 participants did report this mutation as present in the gyrA_2 variant of the gene, present in PointFinder database since June 2022. All these latter participants used PointFinder as the detection tool (FWD17 in combination with another tool).

RingTrial1 – First annual inter-laboratory ring-trial of bioinformatics pipelines for *Salmonella* and *Campylobacter*

- 39 participants invited, 23 participants submitted results

- Whole Genome Sequences from 4 *Salmonella* and 4 *Campylobacter* strains (fasta or fastq format)

- Participants were asked to analyse sequences and report antimicrobial resistance genes and point mutations
- Reporting results through an online platform
- Aim of this and following ring-trials is to investigate outcome of different databases, tools and bioinformatic pipelines used by participants and compare their performance of detection of antimicrobial resistance genes and point mutations

Service contract for the provision of EU networking and support for public health reference laboratory functions for antimicrobial resistance in *Salmonella* species and *Campylobacter* species in human samples

SC 2019 74 09

Deliverable T1.17.1

Report on the first annual inter-laboratory ring-trial of bioinformatics pipelines for *Salmonella* and *Campylobacter*

> Version nº: 1 Date: 21-12-2022

DTU

Salmonella and Campylobacter strain characteristics

Sequence	Serotype	ST	Genes*	Point mutations
TRING1S-1	Bredeney	505	qnrB19	gyrA D87G
TRING1S-2	Monophasic Typhimurium (05-)	34	aac(3)-IVa, aadA16, aph(3'')-Ib, aph(4)- Ia, aph(6)-Id, arr-3, blaTEM-1, catA2, dfrA27, floR, qacEdelta1, sul1, sul2, tet(D)	None
TRING1S-3	Corvallis	1541	aph(3'')-Ib, aph(6)-Id, qnrS1, sul2, tet(A)	None
TRING1S-4	Emek	76	sul1	gyrA S83Y

*AMRFinderPlus output

Sequence	Species	ST	Genes*	Point mutations
TRING1C-1	C. jejuni	19	blaOXA-193	gyrA T86I
TRING1C-2	C. jejuni	464	blaOXA, tet(O)	50S L22 A103V, gyrA T86I
TRING1C-3	C. coli	8195	blaOXA-193, tet(O)	gyrA T86I
TRING1C-4	C. coli	832	aad9, aadE, blaOXA-193, tet(O)	50S L22 A103V, gyrA T86I

*AMRFinderPlus output

Tools used for Salmonella gene and point mutation detection

Gene detection

Point mutation identification

Reference data set name	Tools a	applied
	Gene detection	Point mutation identification
RefAMR	AMRFinderPlus on SPAdes assemblies	AMRFinderPlus on SPAdes assemblies
RefRes	KMA with ResFinder database	KMA with PointFinder database

Salmonella gene and point mutation reporting

In general very good performance

Results classified according to databases or database combinations used:

One participant's result (R18) excluded in the analysis, likely due to submitting the results in the wrong order – shaded with grey in all tables

Salmonella TRING1S-1 - example

Table 6. Genes found in sequence TRING1S-1, Green – ResFinder, Blue – AMRFinder and ResFinder, Yellow – a mix of databases.

Lab #	RefRes	ROS	806	R07	R17	R18	R2 0	R21	R 23	R27	RefAMR	R08	R10	R 22	R26	R28	R01	R02	R24
					ResF	inder							Res A	MR		L		Mix	
ResFinder_db																			
AMR_Finder_db																			
 CARD db																			
aac(6')-laa	Х	Х	х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	х	Х		Х	Х
qnrB19	Х	х	х	х	Х		Х	Х	х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х
qnrB5																			Х
qnrB81																			Х
sul1						Х													

Cryptic gene, not present in all databases

Table 7. Point mutation found in sequence TRING1S-1, Green – PointFinder, Blue – AMRFinder and Yellow – PointFinder and AMRFinderPlus databases.

Not present in AMRFinderPlus database (considered noninformative)

Lab #	RefRes	ROS	R06	R07	R10	R17	R18	820	R21	K2 3	R26	R27	RefAMR	R01	R24	R02	R08	R22	R28
						ResF	inder							AMRF			M	lix	
ResFinder (PointFinder)																			
AMRFinderPlus																			
gyrA D87G	Х	Х	х	Х	Х	Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
ργεΔ \$83Υ							Х												
parC T57S	X	Х	Х		Х	Х		X	Х	X	X	Х				Х	Х	Х	

Salmonella TRING1S-2 - example

Lab #	RefRes	R05	806	R07	R17	R18	R2 0	R21	R23	R27	RefAMR	R08	R10	R2 2	R26	R28	R0 1	R02	824	
					ResF	inder					ResAMR							Mix		
ResFinder_db																				
AMRFinderPlus_db																				
CARD_db																				
aac(3)-IV	х	Х	Х	Х	Х		X	Х	х	Х		Х	Х		Х			Х	Х	
aac(3)-IVa											Х	X		Х		Х			Х	
aac(3)-Vla																	Х			
aac(6')-laa	х		Х	Х	X	Х	X	Х	х	Х		Х	X	Х	Х			Х	Х	
aph(3'')-Ib		Х	Х		X	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	
		_																		
blaTEM-1											Х	Х	Х	Х		Х	Х		Х	
blaTEM-1B	Х	Х	Х	Х	X		X	Х	Х	Х		Х			Х			Х	Х	
	<u></u>	<u> </u>	~	~	~		~	~	~	~	~	~	~	~	~	~	~	~		
	_														_					
qacE	х		X						Х											
qacEdelta1											X				Х	Х		Х	Х	
qnrS1						Х														
sitABCD						Х														
sul2	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х		Х	Х	Х		Х		
tet(A)						Х														

variant

Table 8. Genes found in sequence TRING1S-2, Green – ResFinder, Blue – AMRFinder and ResFinder, Yellow – a mix of databases.

mcr-9 does not confer resistance to colistin in over 100 natural *mcr-9*+ isolates (Feldgarden et al 2022)

Tools used for Campylobacter gene and point mutation detection

Gene detection

Point mutation identification

Campylobacter TRING1C-1 – blaOXA example

Lab # RefAMR RefRes R13* **R05** 808 R11 **R2** 8 80 801 807 R0 9 R16 R17 R19 **K**20 2 23 R27 R12 8 ResFinder ResAMR Mix ResFinder AMRFinderPlus CARD blaOXA х blaOXA-193 х х х Х х х Х х Х х х х х х х Х х х х blaOXA-450 × blaOXA-451 х blaOXA-452 х blaOXA-453 х blaOXA-489 х х х blaOXA-61 х х х х х х cmeABC+R х tet(0) × * used an in-house database reads assemblies

Table 13. Genes found in sequence TRING1C-1, Green – ResFinder, Blue – AMRFinder + ResFinder, Yellow – CARD and other databases.

Campylobacter TRING1C-1 – blaOXA example

ResFinder output with reads

ResFinder output with assembly

Antimicrobial	Class	WGS-predicted phenotype	Genetic background
ampicillin	beta-lactam	Resistant	blaOXA-61 (blaOXA-61_AY587956)

unknown beta-lactam	beta-lactam	Resistant	blaOXA-453 (blaOXA-453_KR061507), blaOXA-450 (blaOXA-450_KR061502), blaOXA-452 (blaOXA-452_KR061505), blaOXA-451 (blaOXA-451_KR061504), blaOXA-489 (blaOXA-489_CP013733), blaOXA-193 (blaOXA-193_CP013032)
---------------------	-------------	-----------	--

				Beta-I	actam				
Resistance gene	Identity	Alignment Length/Gene Length	Position in reference	Contig or Depth	Position in contig	Phenotype	PMID	Accession no.	Notes
blaOXA-193	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	unknown beta- lactam	unpublished	<u>CP013032</u>	Class D;OXA-61- like;Natural in Campylobacter coli;Alternative name CJ0299;
blaOXA-450	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	unknown beta- lactam	unpublished	<u>KR061502</u>	Class D;OXA-61- like;Natural in Campylobacter coli;;
blaOXA-452	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	unknown beta- lactam	unpublished	<u>KR061505</u>	Class D;OXA-61- like;Natural in Campylobacter jejuni;;
blaOXA-451	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	unknown beta- lactam	unpublished	<u>KR061504</u>	Class D;OXA-61- like;Natural in Campylobacter jejuni;;
blaOXA-61	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	amoxicillin,amoxi cillin+clavulanic acid,ampicillin,a mpicillin+clavulan ic acid	15917560	<u>AY587956</u>	Class D;OXA-61- like;Natural in Campylobacter coli;;
blaOXA-489	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	unknown beta- lactam	unpublished	<u>CP013733</u>	Class D;OXA-61- like;Natural in Campylobacter coli;;
blaOXA-453	99.8708010336	774/774	1774	NODE_3_length _154164_cov_9 6.482961	3373434507	unknown beta- lactam	unpublished	<u>KR061507</u>	Class D;OXA-61- like;Natural in Campylobacter jejuni;;

Campylobacter TRING1C-1 – point mutations example

Table 14. Point mutations found in sequence TRING1C-1, Green – ResFinder, Blue – AMRFinder, Yellow – Different databases.

Lab #	RefRes	R0 1	R05	R0 6	R0 7	6 0 2	R16	R17	R19	R20	R2 1	<mark>62</mark> 3	R2 7	RefAMR	R24	R0 8	R11	R12	R13 *	R22	R28
						Re	sFind	ler						AN	IRF		Mix				
ResFinder (PointFinder)																					
AMRFinderPlus																					
235						Х	Х														
gyrA T86I	×	Х	Х	Х	X	Х	Х	Х		Х	X	Х	X	Х	Х	Х	X	Х	X	Х	Х

* used an in-house database

1

Table S 1. Unique point mutations reported by participant R09 in Campylobacter sequence TRING1C-

Laboratory	Gene	Point mutations reported
R09	gyrA	R285K agg -> aag
	23S	327G>A g -> a, 643G>R g -> r, 554A>C a -> c,
		298G>A g -> a, 571T>G t -> g, 1027A>G

		Quin	olone	
Mutation	Nucleotide change	Amino acid change	Phenotype	PMID
gyrA:p.T86l	aca -> ata	t-≻i	nalidixic acid,ciprofloxacin	11266291, unpublished, 8384814, 16713726

TRING1C-1_Campylobacter.fasta

		No class	s defined		
Mutation	Nucleotide change	Amino acid change	Phenotype	PMID	Notes
23S:g.571T>G	t -> g	-	Unknown phenotype	-	Phenotype not found in database
23S:g.298G>A	g -> a	-	Unknown phenotype	-	Phenotype not found in database
23S:g.364G>C	g -> c	-	Unknown phenotype	-	Phenotype not found in database
23S:g.327G>A	g -> a	-	Unknown phenotype	-	Phenotype not found in database
23S:g.1027A>G	a -> g	-	Unknown phenotype	-	Phenotype not found in database
gyrA:p.R285K	agg -> aag	r -> k	Unknown phenotype	-	Phenotype not found in database
23S:g.554A>C	a -> c	-	Unknown phenotype	-	Phenotype not found in database
23S:g.296C>G	c -> g	-	Unknown phenotype	-	Phenotype not found in database
23S:g.1752T>C	t -> c	-	Unknown phenotype	-	Phenotype not found in database

Campylobacter TRING1C-2 – database example

Table 15. Genes found in sequence TRING1C-2, Green – ResFinder, Blue – AMRFinder + ResFinder, Yellow – CARD and other databases.

Lab #	efRes	2	5	6	و	5	<u>و</u>		1	8	7	efaMR	8	1	2		9	*	1	2	4	
	Re	문	2	8	2	2	2	8	8	8	8	Re	8	2	8	8	8	2	8	2	8	
					R	esFind	er						R	lesAM	R		Mix					
ResFinder																						
AMRFinderPlus																						
CARD																						
blaOXA												Х			Х							
blaOXA-193	Х					Х	Х	Х	Х	Х	Х		Х			Х						
blaOXA-461																		Х				
OXA-660																					Х	
tet(O)				Х								Х	Х					Х			Х	
tet(0/32/0)	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х			Х	Х	
tet(O/M/O)																		х				
* used an in-house	datab	ase																				
(Ŷ														
assemblies									ds													

- Difference in reference datasets in *blaOXA* gene reporting due to differences between databases
 - blaOXA in AMRFinderPlus (imperfect match to sequences of, f. ex. blaOXA-193) potentially novel

Campylobacter TRING1C-2 – point mutation example Not always a clear picture

Table 16. Point mutations found in sequence TRING1C-2, Green – ResFinder, Blue – AMRFinder, Yellow – Different databases.

- 50S L22 A103V mutation equally common among resistant and sensitive isolates in a set of 516 Campylobacter isolates (Dahl et al. 2021)
- Point mutation free text reporting

Campylobacter TRING1C-4 – nomenclature example

Table 19. Genes found in sequence TRING1C-4, Green – ResFinder, Blue – AMRFinder + ResFinder, Yellow – CARD and other databases.

 Genes of aminoglycoside nucleotidyltransferase subfamily (ANT(6)-I) are also known as aminoglycoside adenyltransferases of the AADE family (Hormeño et al., 2018) - difference in nomenclature between databases

Conclusions and lessons learned

Overall, the expected targets were identified by participants, but some fine-tuning is needed

Small differences were observed due to:

- Different input data types (reads vs assemblies)
- Different tools and databases
- Differences in nomenclature in different databases
- Genes in difficult genomic regions can be potentially missed during assembly
- Identification of the exact variant through mapping might be difficult if many closely related variants in the database are present

<u>In general:</u>

Keep your database updated at all times

Decide on a strategy when using more than one databases:

- If you merge the output from different databases be critical and assess the genes individually – more time consuming
- Use one well curated database and a tool with a clear output

To be expected in the next round:

- More detailed and clearly formulated questions will help with result analysis
- Completely new reporting system any suggestions that would make it easier for you..?
- EQA and RingTrial coordinated

Thank you for your attention!

Contact us at fwdamr@ssi.dk